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A logic is paraconsistent iff the inference {a, 10} = B fails in the logic in general. In this article 1 will explain
_ varlous paraconsistent logics and some of their applications and ramifications. There are at least four different
approaches to paraconsistent logic: (i) The non-adjunctive approach (due originally to Jaskowski). Cha-
racteristically this rejects the inference {a, B} = aAB. (ii) The positive-plus approach (largely due to da Costa).
This adds to standard positive logics a non-truth-functional negation. (iii) The relatedness approach (due
originally to Smiley). Characteristically, this rejects the transitivity of deducibility. (iv) The De Morgan approach
(due originally to Anderson and Belnap). Characteristically, this approach gives up the disjunctive syllogism,
{on(qavB)] = B. The importance of paraconsistent logics is that they allow for the recognition of the existence
of theories that are inconsistent but non-trivial, and consequently for the investigation of these. Such theories
may occur in many domains: (i) Automated reasoning. Any sophisticated data base is liable to be inconsistent
due to multiple sources, the undecidability of inconsistency, etc. Moreover, any reasonably powerful Al
reasoning system is liable to end in inconsistency, due to semantic paradoxes. (i) Sernantics. Any adequate
theory of meaning must, to avoid self-refutation, be theoretically capable of giving the semantics of the
language in which it, itself, Is expressed. Such theories characteristically end up in inconsistency due to
the semantic paradoxes. (iii) Set theory. A naive theory of sets based on the unrestricted comprehension
axiom 3y vx (xgy <> ¢), though inconsistent, provides for many of the set-theoretic operations required in
parts of mathematics, such as category theory, not available in theories such as ZF. The recognition of
important inconsistent theories has many philosophical implications. One immediate one concerns Goedel’s
incompleteness theorem. Many have tried to make philosophical capital out of the claim that for any (suitably
strong) theory there are true statements that are not provable. Such capital is rendered worthless by
paraconsistent logics. For Goedel’s theorem applies only to consistent theories. Yet many global theories
are inconsistent as (i) — (iii) above illustrate. Challenging and important new theories are fairly rare in logic,
but as, | hope, should be clear, paraconsistent logic is just such a theory.

'n Logika is parakonsistent as en slegs as die afleiding {a, 10} = B in dié logika in die algemeen faal. In
hierdie artikel verduidelik die outeur verskeie parakonsistente logikas en van hulle toepassings en vertakkings.
Daar is ten minste vier verskiliende benaderings tot parakonsistente logika: (i) die saamvoegingslose
benadering (oorspronklik te danke aan Jaskowski). Kenmerkend verwerp hierdie benadering die afleiding
{a, B} = a A B. (i) Die positief-plus-benadering (in ’n groot mate te danke aan Da Costa). Dit voeg aan standaard-
positiewe logikas 'n nie-waarheidsfunksionele negasie toe. (iii) Die verwantskap-benadering (oorspronklik
aan Smiley te danke). Kenmerkend hiervan is die verwerping van die transitiwiteit van deduseerbaarheid.
(iv) Die De Morgan-benadering (oorspronklik te danke aan Anderson en Belnap). Kenmerkend hiervan is die
prysgawe van die disjunktiewe sillogisme, {aA(1aVB)} = B. Die belangrikheid van parakonsistente logikas
is dat hulle die moontiikheid laat vir die erkenning van die bestaan van teorieé wat inkonsistent maar nie
triviaal is nie, en gevolglik vir die ondersoek hiervan. Sodanige teorieé kan op baie terreine voorkom: (i)
Geoutomatiseerde redenering. Enige gesofistikeerde databasis kan inkonsistent wees as gevolg van ’n
verskeidenheid bronne, die onbeslisbaarheid van strydigheid, ens. Bowendien kan enige redelik kragtige
kunsmatige intelligensie-stelsel vir redenering op strydighede uitloop vanweé& semantiese paradokse. (ii)
Semantiek. Enige adekwate betekenisteorie moet, ten einde selfweerlegging vry te spring, teoreties in staat
wees om rekenskap te gee van die semantiek van die taal waarin die teorie self geformuleer is. Kenmerkend
van sodanige teorieé is egter dat hulle vanweé& die semantiese paradokse op strydighede uitloop. (iii)
Versamelingsteorie. 'n Naiewe teorie van versamelings gebaseer op die onbeperkte aksioma van versamelings-
vorming, 3y vx (xey <> @), voorsien, hoewel dit inkonsistent is, talle van die versamelingsteoretiese operasies
wat in dele van die wiskunde, soos kategorieteorie, benodig word, maar wat nie voorhande is in teorieé
soos ZF nie. Die erkenning van belangrike inkonsistente teorieé het baie filosofiese implikasies. 'n Voor-
die-hand-liggende een raak Goédel se onvolledigheidsteorema. Baie het filosofiese munt probeer slaan
uit die aanspraak dat ten opsigte van enige (gepas sterk) teorie daar waar bewerings is wat nie bewysbaar,
is nie. Parakonsistente teorieé verydel dié hoop op filosofiese wins, want Gédel se teorema geld slegs
konsistente teorieé. Baie totaliteitsteorieé is egter inkonsistent, soos punte (i) — (iii) hierbo aantoon. Uit-
dagende en belangrike nuwe teorieé is redelik skaars in logika, maar die outeur hoop dat dit duidelik sal
wees dat parakonsistente logika juls so 'n teorie is.
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Introduction’

Paraconsistent logic is a relatively new branch of logic; its
history is barely 35 years old. Yet already it has shown itself
to be an important development in modern logic. In this article
I will try to give some idea of the content and importance
of the subject, assuming that the reader knows little about
it. Because the subject is far too large to give even a com-
prehensive survey in a single article, I shall not attempt this.
Rather, I shall give a selective survey which, I hope, conveys

the spirit of the subject. For the same reason I shall not give
any detailed proofs in this article. The proofs of facts cited
are either sufficiently elementary to be left to the reader, or
else referenced.?

Let us start with a definition of the subject. Suppose that
I is the consequence relation of a logic. Let us say that it (and,
derivatively, the logic itself) is explosive if the inference: {a,
“a} — B, ex contradictione quodlibet (ECQ), is valid. Classical
logic, intuitionist logic, and most other logics commonly met
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are explosive. A logic is paraconsistent if it is not explosive.
The importance of paraconsistent logic lies precisely in the
fact that it allows for the existence of inconsistent but non-
trivial theories; that is, it allows us to reason in inconsistent
situations without our conclusions exploding to totality. This
is important since there are many situations which are perforce
inconsistent, yet where we still need to discriminate in the
conclusions we draw. I will return to this in the second half
of the article. In the first part I will describe the various
approaches to formal paraconsistent logic.

1. Approach to paraconsistency

Since the defining characteristic of paraconsistent logics is the
failure of the inference ECQ, a good place to start a con-
sideration of the subject is with C.I. Lewis’s well-known
argument for the principle (Lewis & Langford 1959: 250). The
argument (slightly modified for present purposes) goes as
follows:

1) a Assumption
2) 1a Assumption
3) (@A P) From (2)

@) an1(aAf) From (1) and (3)

o B From (4)

This argument depends on four principles. The first is the
principle (1@} 1 (@AY) employed at line (3). The second is
adjunction principle (¢, W} — @AWy, employed at line (4). The
third is the disjunctive syllogism, {aA1(@AB)} + B, employed
at line (5). The final principle is not explicit at any line but
is implicit in the notation; this is the transitivity of deducibility.
Given that (5) follows from things that follow from (1) and
), it, too, follows from (1) and (2). The rejection of each
of these four principles provides an (eco)logical niche for a
family of paraconsistent logics; and like most such niches,
all four are inhabited, as I will now show. In what follows,

I intend to discuss only propositional logics. This is not .

because quantificational extensions of the logics I shall
mention are problematic. It is because, as the above argument
indicates, the real issues involved here concern principles to
which quantification per se is irrelevant. In fact, each logic
in the following four families can be extended to cope with
quantification in simple and obvious ways. The matter may
therefore be safely left to the cogitations of the reader.

2. Non-adjunctive logics

I shall call logics which reject the adjunctiom principle,
naturally enough, non-adjunctive logics. Such logics were the
first of the four kinds of paraconsistent logics to be inves-
tigated; investigations were initiated by the Polish logician
Jaskowski in 1948 (cf. Jaskowski, 1969). Jaskowski’s idea was
simple: suppose that the information we have is provided by
a number of different sources, each internally consistent but
each possibly conflicting with others. Then we shall not
necessarily wish to combine information from different
sources to make inferences. Consequently, multi-premise
inferences, such as adjunction, are suspect.

Jaskowski made his approach rigorous essentially as
follows. Suppose we have a Kripke interpretation, 2, for the
modal logic S5. Then we may identify the information, or
discourse, .of each source with what is true in some one
possible world in 2L. Let us therefore define: a is discursively
Irue in 9 iff Ma is true (at any world) in 2. An inference
is said to be discursively valid iff it preserves discursive truth
in every interpretation. I leave it as a trivial exercise to show
that both adjunction and ECQ are discursively invalid.

i
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Less happily, perhaps, it is also simple to show that the
inference {a, aDB) +— B is not discursively valid. Since the
existence of an implication connective satisfying modus ponens
is obviously desirable Jaskowski was forced to find one. The
one he favoured, discursive implication, Da, is defined as
follows: . D4p is Ma D B. As may be checked, if o and aDa4f
are both discursively true, so is B. Indeed, discursive impli-
cation behaves very much like material implication. In par-
ticular, as Jaskowski proved, the discursive logical truths
containing Da as the sole connective are exactly the classical
tautologies.?

Jaskowski’s original construction may be varied to give a
whole family of logics.* Obvious variations involve changing
the base modal logic and/or taking a modality other than M
in the definition of discursive truth. More sophisticated
variations are also possible.” Typically in these logics, however,
single-premise inference is quite orthodox. Thus fania) - B
is valid. It follows then, that adjunction must fail if the logic
is to remain paraconsistent. Conjunction must, therefore,
behave non-standardly. -

3. Positive-plus logics )

Let us move on to the second logical niche isolated above,
that where the principle (1@} (@A) fails. In fact, this
failure is more profitably seen as a result of a more fun-
damental failure. If we are not to follow the path of discursive
logic, but to have a normally behaving conjunction then we
will have {Aw] + ¢. Thus, in this niche contraposition must
fail; and this may be thought of as the fundamental principle
rejected by this approach.

This line was suggested first by the Brazilian logician da
Costa in 1963.5 Da Costa, in fact, took it that not only
conjunction should behave in a standard fashion, but that
all positive connectives should so behave. His idea was
therefore to obtain a paraconsistent logic by grafting a non-
standard negation on to classical or intuitionist positive logics.
This is why I call this approach ‘positive-plus’.

The approach may be illustrated simply as follows.” Let
a positive-plus evaluation be any map from the language of
the classical propositional calculus to {0, 1}, which is truth
functional in the normal way with respect to positive con-
nectives, but is arbitrary and may be non-truth-functional on
negation. Thus, the value of o under an evaluation may be
1 or 0 quite independently of the value of 1a under the
evaluation. Positive-plus consequence is defined, in the natural
way, as truth preservation under positive-plus evaluations. As
may easily be checked, both contraposition and ECQ are
positive-plus invalid.

The logic just specified is not very interesting. For the
conditions on negation are so weak that there are no principles
of inference which concern negation essentially. To make the
logic interesting, extra conditions must therefore be imposed
on the evaluations of negations. A simple one (cf. Batens,
1980) is the condition that at least one of a and 7o must be
true under an evaluation. This validates the law of excluded
middle. Further conditions generate members of da Costa’s
hierarchy of logics Cj, for natural number i. And if we start
with valuational semantics, or Kripke semantics, for positive
intuitionist logic and graft on a non-truth-functional negation
in the same way, we obtain, amongst other things, da Costa’s
logic Co.

Whilst we can obtain many of the standard properties of
negation by imposing extra conditions on the evaluation of
negation, it should be noted that contraposition must always
fail on this approach, at least if it is to remain paraconsistent.
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For since the positive logic is standard (classical or intui-
tionistic), oD (1D a) is a logical truth. Hence if we had
contraposition in the form, (\Da) O (aDB), it would

follow by the (standard) transitivity of D, that aD(1aDB); -

whence the logic would become explosive.

4. Filter logics

Mention of the transitivity of implication brings us to another
of the ecological niches I mentioned above: that where this
is rejected. Formally, this approach was first proposed by
Smiley in (1959). In a reasonably general form the approach
is as follows. Let F(o, B) be some condition on pairs of
formulas.® For reasons that will become clear, I will call this
relation a filter. Let us say that an inference {o} — P is filter-
prevalid iff it is classically.valid and F(a, B) holds. An
inference is filter-valid iff it is a substitution instance of an
inference that is filter-prevalid. (The complication concerning
prevalidity may be necessary to ensure that the logic is closed
under substitution).

In its most general setting, filter-validity is not a particularly
interesting notion. By choosing the empty filter we can make
every inference invalid. But Smiley, and those who have
followed him in this approach, had a particular kind of filter
in mind. The thought is that for an inference to be valid it
should do more than just preserve truth; there must be some
connection of relevance or meaning between premise and
conclusion. The filter, F, was meant to disqualify pairs of
formulas failing this connection. This still leaves plenty of
formal scope as to what the filter should be. Smiley’s original
idea was to take the relation F(a, B) to be: a is not a
contradiction and B is not a tautology. In this case, each of
the individual inferences used in the argument of section 1 is
filter-valid, but ECQ is obviously not. It follows, then, that
transitivity fails.

By varying the formal filter, we can generate a whole family
of filter logics.® Somie of these filters will produce logics that
are relevant in the technical sense. A logic is (technically)
relevant iff whenever the inference {a] — P is valid, according
to the logic, a and P share a propositional variable. As a
moment’s thought shows, Smiley’s filter above produces a
relevant logic. More simply, and not equivalently (but with
the same effects on transitivity and ECQ), we might just take
the filter to be variable sharing itself. Such a filter-logic is
obviously relevant.'

5. De Morgan logics

There is also a close connection between relevance and the
fourth class of logics I mentioned in section 1, those where
the inference disjunctive syllogism characteristically fails,'* De
Morgan logics. Some of these were first proposed seriously
by the American logicians Anderson and Belnap (cf. 1975)
in the early 1960s as an- analysis, amongst other things, of
the informal notion of relevance.

I call these logics De Morgan logics, not because of any
intrinsic connection with Augustus, but because their algebraic
semantics'? centre on the notion of a De Morgan lattice (due
largely to the American logician Dunn).'* A De Morgan lattice
is a distributive lattice with an involution operator, i.e., an
operator *, satisfying the conditions i) a=a** and ii) if a<b
then b*<a*. A De Morgan evaluation for a propositional
language containing the connectives A, V and 1, is a map from
formulas to a De Morgan lattice such that the meet, join and
involution operators are the interpretations of conjunction,
disjunction and negation respectively. An inference ' {a} + B
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is De Morgan valid iff for every De Morgan lattice and every
evaluation on that lattice, v, v(a)<v(p).

The simplest De Morgan lattice, other than the 2-element
Boolean algebra, is the 3 element algebra {f, p, t}, (ascendingly)
ordered as shown, where * maps ¢to f, vice versa, and p to
itself. Taking the evaluation which maps o, to p and B to f,
we obtain counter-examples to both the disjunctive syllogism
and ECQ. :

The logic just specified is, in fact, Anderson and Belnap’s
(1975, ch.3, sec.18) logic of First Degree Entailment, and is,
arguably, the most basic De Morgan logic. Other such logics
are obtained by extending the above semantics in two ways.
First, since De Morgan lattices are not guaranteed a maximal
element, it is impossible to use such an element to define
theoremhood in the way standard in algebraic semantics. To
rectify this problem, we suppose that the lattice comes with
a designated element, p, such that theoremhood corresponds
to taking an algebraic value greater than or equal to p under
any evaluation.

Secondly, and more importantly, to cope with languages
that contain an implication connective, —, we need to add
a new binary operator, =, to the algebra. This is to be the
semantic interpretation of the connective.!® Putting various
conditions on = and p (the most obvious of which is: if a<b
then p =< a=b) produces a rich variety of De Morgan logics,
which have been investigated by many people.’® Amongst
these are the higher degree logics of Anderson and Belnap,
E and R. By no means all the logics generated are technically
relevant, however. Indeed, some of the simpler and important
ones are irrelevant.'’

1 have now reviewed the four families of paraconsistent
logics: non-adjunctive logics, positive-plus logics, filter-logics,
and De Morgan logics. As we have seen, they are not only
distinct, but have been motivated by often quite different
considerations. All, however, sustain the possibility of rea-
soning non-trivially in inconsistent situations. It is time to turi
to some examples of situations where this is important. There
are a number of these.

6. Automated reasoning

Let us start with the area of automated reasoning. One of
the most obvious uses of computers is the storage of large
amounts of information. But we require computers not only
to store the information for us but to operate on it: to sort
it, search it and, crucially, to infer from it. Now, as anyone
who is minimally connected with data collection knows, data
collected are liable to be inconsistent, both because of mistakes
made in entering it and because of multiple sources. This may
not be too much of a concern for a simple relational data-
base, for such data-bases have no real way of expressing nega-
tion at all; but it is certainly a problem for more sophisticated
data bases operating with theorem-provers. For if the theorem-
prover implements an explosive logic (which, of course, most
standard theorem-provers do) the automated reasoning may
give us a totally arbitrary conclusion based on this incon-
sistency.

Neither is there any way we would automatically expect
to pick this problem up. We cannot rely on the machine telling
us that the data are inconsistent, since it might not discover
this en route to its conclusion. We might be alerted to it by
the fact that the computer told us ‘yes’ to every question we
asked it. But this might not happen: the answers to some
questions may not be found, either because the memory space
is too small, or because the heuristic search used fails to detect
them. And even if it, or we, did discover that the data was
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_inconsistent, this would not be a great deal of help. Ideally
we might like to get rid of the inconsistency in the data, but
there is no algorithm for this. Perhaps, in the future, we will
have heuristics for modifying inconsistent data-bases to get
rid of a particular contradiction; but none exists at the
moment.. And even if we had such a heuristic, we are stuck
with the inconsistent data until it is applied (which may take
considerable time). Moreover, since it is only a heuristic, the
data are still: liable to be inconsistent afterwards. We therefore

_seem to be stuck with the problem of inconsistency here. The

situation is tailor-made for paraconsistent logic.

The next question, then, is how to implement it effectively.

As far as I know, the only class of paraconsistent logics for .

which this has been considéred in any detail is the last one
we considered: De Morgan logics. There are several neat
algorithms for implementing the logic of first degree en-
tailment. For example, the following, due to the Chinese
computer scientist, Fangzhen Lin,'® which uses semantic
tableaux. Suppose that we draw up the truth-iree for a
formula using the standard rules of classical logic (so that,
for example, from a node of the form aAf we descend to
nodes a and B; and from a node of the form 1(aAp) we split
the branch and descend to one node 7 o and one1B.'° Given
two branches of such trees let us call them complementary
if there is an atomic formula which occurs negated in one
‘branch and unnegated in the other. Then the inference {a]
P is valid in the logic in question iff for every branch of
the tree of o there is a complementary branch in the tree for
1B and vice versa. (Incidentally, this algorithm can be modified
in a straightforward way to handle quantification.)

Once ‘we consider De Morgan logics which contain an
implication connective the situation is less satisfactory. For
a start, mainly propositional logics have been investigated, and
even here the algorithms are quite complex. Perhaps the major
problem is that the best understood and most efficient
algorithm for implementing classical and similar logics involves
the principle of inference called resolution: {1avp, Bvy)
71 aVvy. This is but a variant of the disjunctive syllogism, whose
failure is, as we saw, the distinguishing mark of De Morgan
logics.?! Thus, the standard techniques are inapplicable here.
It would be nice to have a method for De Morgan logics as
simple and powerful as resolution is for classical logics; but
none such is known. An extra complicating factor is that
several of these propositional logics are known to be unde-
cidable (though recursively enumerable).??

7. Semantics

Before we leave the topic of automated reasoning, let us note
that there is another and, perhaps, more profound reason why
this is forced into the inconsistent. To explain this I need to
talk about truth for a moment. Truth is a predicate of
statements, beliefs, or other cognitive entities, which we may,
for the present, take to be represented by sentences. It is
characterized, prima facie at least, by the principle known as
the Tarski T-scheme: Ta<>o’ where a is any sentence, o is
its name, and o’ states its meaning.?* Now in many languages
there is a variety of means (using demonstratives, definite
descriptions, arithmetic diagonalization, etc.) to construct a
sentence, B, that means that 1 TB. (This very sentence is not
true.) Substituting this in the T-scheme gives TB<>~Tf, whence
it follows that TBA1T.

This is the liar paradox, and is but one of a large number
of paradoxes known to arise in connection with truth and
related notions, such as satisfaction and definition: What has
it to do with automated reasoning? Simply this: any artificial

S.-Afr. Tydskr. Wysb. 1988, 7(2)

intelligence system capable of more than very limited appli-
cation must be able to reason about its own cognitive states,
those of others, and in particular, their truth or otherwise.*
Thus the system will be inconsistent.

The major suggestions concerning how to avoid the se-
mantic paradoxes are to the effect that the T-scheme itself
must be weakened somehow. These suggestions are all
notoriously problematic.?> Moreover, the weakened forms of
the T-scheme are not adequate to capture standard and
unproblematic cognitive reasoning (cf. Priest, 198 +). There
is not time to go into this now. But it should be noted that
this avenue of escape is ruled out in another context where
paraconsistent logic finds another natural application: seman-
tics.

Semantics is that branch of logic/linguistics which aims to
spell out a theoretical understanding of meaning, both in
general and of particular languages. How this should be done
is still a matter of contention. But all the general accounts
of meaning we have, insist that to spell out the meaning of
an indicative sentence is, in some sense, to spell out its truth
conditions.? The sentence which spells out the truth conditions
of a sentence is, of course, the instance of the T-scheme for
that sentence. Thus theoretical linguistics is committed to the
T—scheme in some form or other, and hence to inconsistency.

* The problem of inconsistency in linguistics has been avoided
rather than faced, by and large. It has been avoided by the
simple expedient of giving semantics for languages (or frag-
ments of natural language) which do not themselves contain
semantic notions. Once it is faced, it is clear that general
semantics must be based on paraconsistent logic. In this way
it is possible to construct theories of truth and meaning for
languages in which the theory itself is couched (and which,
ipso facto, contain the notion of truth), as has now been
demonstrated.?’

Before we leave the issue of semantic paradoxes, there is
another important observation worth making. This concerns
the principle of inference called absorption: {o—(0—f)} —o—p.
As was shown essentially by Curry in (1942), the T-scheme
plus absorption (and modus ponens) leads to triviality quite
independently of the deduction of contradiction.?® The
argument goes as follows: by self-reference of any form, we
can construct a sentence, y of the form Ty—P, where B is
arbitrary. (If this sentence is true, B.) The T-scheme for the
sentence is: Ty <>(Ty—f). Absorption, - left to right, gives
Ty—B; then modus ponens, right to left, gives Ty; whence,
again by modus ponens, [.

This observation is important since it shows, as might be
expected anyway, that not all paraconsistent logics are suitable
for all inconsistent situations. In particular, all non-adjunctive
logics and positive-plus logics have absorption as a valid
principle; most of the standard filters also fail to filter out
absorption. Hence De Morgan logics are the only class of
logics suitable for use in this context; and not all of these can
be used either.?® .

8. Set theory
The final kind of inconsistent situation I wish to mention is
set theory. This may appear somewhat surprising initially; for
set theory is nowadays tacitly identified with Zermelo-Fraenkel
set theory, or some other set theory pegged to the cumulative
hierarchy. And such theories are (we all hope) consistent. But,
of course, the semantic paradoxes of the last section-are only
one kind of paradox; and they have a close cousin in the set-
theoretic paradoxes. Let us review the historical situation.
At the end of the last century set theory made its ap-
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pearance as a fully fledged theory, and was even formalized
by Frege. The axioms of set theory which seemed to Frege
to capture our intuitive notion of set (and no one would ever
have thought to challenge this view but for the paradoxes)
amount to conditions for the existence and identity of sets,
Abstraction and Extensionality:

vy (el < 00))

vX(O() < v (X)) = o)} = Dow)l

where .in the first of these y is free for x in @.*° As was
discovered, given only minimal logical principles of inference,
the axioms are inconsistent. The quickest contradiction is
Russell’s. Just take “1xex’ for @(x) in the abstraction axiom,
to get rer—>rer and hence rerA-rer, where r is {x;xex].

Now, much effort was put into trying to find a consistent
sub-theory of this theory, adequate to do justice to the notion
of set. The result is Zermelo-Fraenkel set theory (or some near
equivalent). And it must be admitted that it does pretty well,
at least as long as we stick to local theories (i.e., theories
‘concerning sets such as the reals, of some bounded rank).
Once we move to global theories, however, it comes unstuck.
This is particularly clear in the case of category theory.?!
Notoriously, (ZF) set theory is unable to provide the con-
ceptual set theoretic wherewithal for this.** In particular, it
is unable to form or operate on large categories, such as the
category of all sets, of all groups, or of all categories.

This is a direct result of the fact that the set-existence axioms
. of ZF are but a pale shadow of those of Frege, which, as
he thought, do capture the set theoretic constructions inherent
in thought. The universe of sets, of which the cumulative
hierarchy is but a part, is, globally, inconsistent. Obviously,
therefore, we need to use a paraconsistent logic when exploring
it.

Let us call Frege’s axioms above, based on a paraconsistent
logic, naive set:theory. The paraconsistent logic had better
not contain the absorption principle, since otherwise tri-
vialization due to Curry paradoxes will occur.* Thus, we may
take this to be an absorption-free De Morgan logic. An
important result due to the Australian logician Brady (1988),
is that for many De Morgan logics without absorption, naive
set theory is non-trivial.**

In naive set theory we can provide for all the set-theoretic
constructions the working mathematician, including the
category theorist, needs (unions, intersections, pairs, ordered
pairs, functions, infinite sets, power sets, etc.), including those
she cannot get in ZF (complementation, the universal set, etc.)
(cf. Routley, 1977).%° Whether these extra resources allow for
any interesting and novel mathematical results, for example
whether the category of categories (which, of course, has itself
as a member) has any interesting category-theoretic properties,
I do not know.3¢

9. Goedel’s theorem:: .

In this article I have concentrated mainly on technical issues.
It is clear, however, that paraconsistent logic has important
philosophical ramifications. By showing that it is possible to
be inconsistent whilst remaining coherent, paraconsistent logics
challenge any philosophical position which is based on an
assumption of the necessity of consistency. Thus, for example,
standard accounts of rationality, of existence, of motion, and
so on, all depend on the unargued assumption that incon-
sistency is not to be countenanced. I shall not attempt to go
into these issues here.3” But I wish to mention briefly one
example of the philosophical import of paraconsistent logic,
since it is very closely connected with a number of the issues
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I have already discussed.

In the previous sections I have referred several times to the
logical paradoxes. These, and the self-reflexivity inherent in
them, are obviously closely connected with Goedel’s theorem.
Goedel’s theorem has been thought to have many philo-
sophical implications: the death of Hilbert’s programme in
the foundations of mathematics; the falsity of mechanism in
the philosophy of mind; the inherent vagueness of the notion
of natural number.3® But Goedel’s theorem about unprova-
bility applies only to consistent theories.® Yet each of the
philosophical applications promotes the unprovability into a
umniversal result. And in each case, in the light of paraconsistent
logic, we can see that inconsistency must be countenanced.*?
For example, if our conceptual apparatus of sets is incon-
sistent then so are both mind and mathematics. Paracon-
sistency therefore sweeps away, in a single blow, several
philosophical arguments. A

With this rather swift glance at the broader implications
of paraconsistency, I. must finish. I hope I have done enough
to give you an idea of the subject and make its literature more
accessible. I hope, however, that I have been able to do more
than this, and that I have whetted your interest in it. Since
paraconsistent logic is such a young subject, there is much
that is unknown and requires research. And since the ap-
plications of the subject are so broad and deep, I think it likely
that researchers in the subject will find further rich rewards
there.

Notes

1. This talk was an invited address at the conference
Interlogicon 87, an inter-disciplinary conference on
mathematical logic and related subjects held at the
University of Durban, July 1987. I am very grateful to the
organizers of the conference, and particularly Chris Brink
and the Department of Mathematics of the University of
Cape Town for the invitation. I am also grateful to the
South African HSRC, whose funding made this visit
possible. I wish to make it clear, however, that the visit
should in no way be interpreted as support for the racist
policies of the South African Government. I
wholeheartedly concur with the sentiments expressed by the
South African Journal, Philosophical Papers, that
Apartheid is an infringement of human, civil and academic
rights, and an affront to human dignity.

2. More comprehensive and detailed surveys can be found in
Priest and Routley (1983) and (1984). Many of the issues 1
mention are further discussed in Priest (1987). T will refer
to these sources in what follows as SPL, IPL and IC
respectively. The collections of essays to which the first

" two of these belong provide a more detailed picture of the
discipline. A distinctly South American survey of the
subject can be found in Arruda (1977).

3. SPL, sec 3.1. This may explain why Jaskowski preferred
discursive implication to strict implication, which also
satisfies modus ponens, but. which he seems to ignore.

4, Many of these have been investigated, especially by Polish
logicians and da Costa. See IPL, sec 3.

5. For example, that of the Canadian logicians Schotch and
Jennings, ibid. )

6. See da Costa (1974), IPL sec 3, and SPL secs 2.2 and 3.2.

7. Da Costa’s original approach was proof-theoretic; the
semantics came later. However, as throughout this article I
shall concentrate on semantics rather that proof theory.
Such an approach is, I think, much more illuminating.

8. Or, more generally, a set of formulas and a formula. For
simplicity I will deal only with the single premise case.

9. A number of these are discussed in Epstein and Walton
(1979). An elegant generalization of Smiley’s filter is
proposed by the erstwhile South African logician Tennant
in (1984).
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10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.

22.
23.

. See, e.g., Perlis (1985). |
25.

26.

27.
28.
29.

30.

31.

32.

It is worth notmg that although filter logics
characteristically result in the failure of transmVlty, filters
can be found which respect it. See Dunn (1980).

A more usual, and equivalent, form of the disjunctive
syllogism in the context of De Morgan logics is:
{a,70VB}—PB. (Modus ponens for ‘material implication’.) It
should be noted that the disjunctive syllogism also fails in
positive-plus logics. However, I chose this as the mark of
De Morgan logics sinice in these, unlike the positive-plus
logics, it is the only major principle of inference )
concerning negation guaranteed to fail. (Indeed, it is
equivalent to ECQ.) The philosophical debate concerning
De Morgan logics has also promoted their counter-. .
examples to it to centre stage.

There are, in fact, a number of different semantics for
these logics including, notably, Routley-Meyer semantics.
(See IPL sec 3, and SPL secs 2.3 and 3.3.) The algebraic
semantics provide a convenient focus for the present
occasion, however.

See Anderson and Belnap (1975), ch 3 sec 18. De Morgan
lattices have also been used in other contexts, where they
have been called distributive involution lattices or quasi-
Boolean algebras. See Anderson and Belnap, loc cit p 194.
Again, for simplicity, I restrict myself to the single premise
case.

For technical reasons, it is often convenient to add to the
algebra a binary ‘consistency’ operator, o, called fusion. It
is then (eob*)* that represents — algebraically.

Notably by Routley, Meyer and their associates. See
Routley et al (1982). Their investigations have, however,
used mainly (im)possible-world semantics rather than
algebraic semantics. For algebraic investigations, see e.g.,
Meyer and Routley (1972) and Priest (1980).

This is true of the logic RM. It is even clearer in the case
of RM3, a logic which has played a fundamental role in
the investigations of naive set theory. Paraconsistent
Lukaciewicz many-valued logics, such as Lt with
designated values [.5, 1], are also in this class, as is the
logic of IC ch 6.

Lin (1986). For other algorithms, see Dunn (1976), Belnap
(1977) and Bolan (1985).

See, e.g., Jeffrey (1981), ch. 2.

‘By members of the Automated Reasoning Project at the

Australian National University. See Thistlewaite et a/
(1987).

It should be noted, however, that resolution can be
interpreted as an application of transitivity {a—p,
B—y}+—oa—y, for a genuine implication operator (not
material implication), and therefore as quite correct. In this
way, Prolog, say, can be seen as a perfectly correct
fragment of a De Morgan logic. If resolution is interpreted
in this way, of course, it-is no longer true that every
formula can be put in clausal form.

Notably, the Anderson Belnap systems E and R. See
Urquhart (1984).

See Tarski (1956), sec. 1.

See Priest (1984a) and I/C ch 1. Another suggestion is to
jettison the law of excluded middle. This is just as
problematic. See the references just cited. -
Whether truth is to be understood in its simple, Tarskian,
sense, the constructive sense of the verificationists, or the
truth-in-a-possible world form of Montague semantics.
See Priest and Crosthwaite (1988) and IC ch. 9.

Curry actually showed it for set theory. But the 51tuat10n
in semantics is similar. See n 33.

The Anderson Belnap logics E and R both contain
absorption for example.

Of course, Frege’s axioms appeared somewhat different,
being in a second order theory in which e was defined.
Essentially, the claim is right enough, however.

?ut it is equally the case in formal semantics. See IC ch.

See IC ch 2, and also Bell (1981).
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33. Let ¢ be {x;xex—P], for arbitrary . The abstraction
scheme then gives us cec<>( cec —=f8). The rest of the
proof of B is as in the semantic case.

34, Trying to characterize the extent of inconsistency is,
however, a different and unsolved matter.

35. Note, however, that some care has to be taken in the
definition -of some of these constructions if they are to be
shown to have the usual properties; and some things will
strike mathematicians, accustomed as they are to ZF, as
rather strange. For example, it is possible to produce sets
other than the empty set that have no members. It cannot
be inferred from 73xe(x) and 713xy(x) that vx(@(x)<=>w(x) ).

36. It should also be noted that not all of Cantorian set theory
appears to be forthcoming in the theory. For example,
standard proofs of Cantor’s thcorem break down in De
Morgan logics. Working mathematicians might see this as
something of a blessing.

37. On the question of rationality, see Priest (1986) and IC ch.

- 7; on motion, see Priest (1985) and IC ch. 12; on bemg,
see Routley (1980), esp. ch. 5.

38. The first is folklore. For the second, see Lucas (1961) and
the literature it spawned [reviewed in Chihara (1972)]. For
the third, see Dummett (1963).

39. In fact, there are even consistent theories, based on De

"Morgan logics, strong enough to represent all recursive
functions which can prove their own absolute consistency,
as Meyer (1975) has shown. Goedel’s first undecidability
theorem still, however, applies.

40. Indeed, it can be. argued that versions of Goedel’s theorem
itself, show that certain situations must be inconsistent. See
Priest (1979) sec II, and Priest (1984) secs 6, 7.
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